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Abstract
We construct a family of explicit rotational solutions to the nonlinear governing
equations for water waves, describing edge waves propagating over a plane-
sloping beach. A detailed analysis of the edge wave dynamics and of the run-up
pattern is made possible by the use of the Lagrangian approach to the water
motion.

PACS number: 47.35.+i

1. Introduction

Standing on a gently sloping straight beach, it is a matter of observation that various waveforms
propagate on the surface of the sea. Among these we find edge waves—water waves that
progress along the shoreline. These waves, often difficult to visualize (this has, probably,
prevented the regarding of this waveform as important for a long time), are coastal trapped,
i.e. their amplitude is maximal at the shoreline and decays rapidly offshore. They produce on
the beach beautiful run-up patterns (highest points reached by a wave on the beach). Although
propagation is along the straight shoreline and the waveform is sinusoidal in the longshore,
these waves are not one dimensional [1].

While they were originally considered to be a curiosity [2], edge waves are now recognized
to play a significant role in nearshore hydrodynamics. For shallow beaches empirical evidence
shows that incident storm waves lose most of their energy through wave-breaking by the
time they reach the shore. After breaking offshore, as the waves progress to shallower
water, their height decreases reaching its least value at the shoreline. Since storms often
result in pronounced shoreline erosion, the surf-zone water processes with the onset of a
storm are dominated by wave conditions other than the incident waves—role attributed by
oceanographers to the edge waves [3]. There are other instances where edge waves are of
significance. For example, processed data from the water waves created by an earthquake
occurring in April 1992 in the ocean floor near the Californian coast show that two distinct
wave packets (both directly generated in the nearshore by the vertical motion of the ocean
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bottom) were recorded at a coastal station about 150 km from the epicentre. At first, less
than an hour after the occurrence of the earthquake, a relatively fast-moving swell with an
amplitude around 15 cm struck the offshore. About two hours after the swell had subsided,
relatively slow-moving edge waves with amplitudes around 50 cm [4] arrived. Measurements
performed on this occasion confirm the rapid decay of the amplitude of the edge waves: at
an offshore distance of 12 km the amplitude is reduced to 10% of its maximal value (attained
at the shoreline). Let us also mention that it has been observed [5] that hurricanes travelling
approximately parallel to a nearby coastline sometimes give rise to edge waves. Interestingly,
edge waves can in fact be generated directly in a laboratory wave-tank [6].

The edge wave phenomenon has been extensively studied and discussed in the
mathematical literature within the framework of linear theory. Due to the small displacements
associated with these waves, the governing equations for water waves or the shallow-water
equations are linearized (Minzoni and Whitham [7] showed that both approximations are
equally consistent) and this simplification permits a thorough analysis. We refer to Ehrenmark
[8] for an up-to-date survey.

Despite the fact that the linearizing approximation lacks rigorous mathematical
justification, it has been used with considerable success as a large variety of theoretical studies
are confirmed in experimental contexts. The investigation of nonlinear edge waves can be seen
as a natural extension to the linear theory. Whitham [9] showed the existence of irrotational
weakly nonlinear edge waves that propagate parallel to the shore using a formal Fourier series
expansion for the full water-wave theory. A study of properties of nonlinear progressive edge
waves based on the fact that the evolution is described by the nonlinear Schrödinger equation
was carried out by Yeh [6]. This paper describes an alternative approach; the main impetus
for the results reported here comes from the belief that the need for a more rigorous theory
remains thoroughly justified. A quest for an explicit edge-wave solution for the governing
equations appears to be of interest since the structure of the edge waves obscures their visual
observation. Moreover, a solution in closed mathematical form provides a background against
which certain features which have been observed (and predicted) can be checked, and it may
also highlight the underlying physical processes more readily than a computationally intensive
approach. It turns out that the deep water wave solution discovered by Gerstner [10] can be
adapted to construct edge waves propagating along a plane-sloping beach. This possibility
was pointed out by Yih [11] but the treatment therein, in essence followed also by Mollo-
Christensen [12], provides only an implicit form for the free water surface. We present a
procedure by which exact edge-wave solutions to the full water-wave equations are obtained.
The closed form of the solution in Lagrangian (material) coordinates permits us to provide
clear illustrations of the structure of these edge waves. From an examination of the solution
we also obtain the run-up pattern, an attractive feature being the occurrence of cusps. The
obtained run-up shapes are confirmed in both field and laboratory evidence [3]. Thus, we
establish with rigour the existence of rotational nonlinear edge waves, unravelling the detailed
structure of the wave pattern.

2. The edge wave

We take a plane beach and adopt a coordinate system as shown below, with shoreline being
the x-axis and still sea in the region

R = {(x, y, z) : x ∈ R, y � b0, 0 � z � (b0 − y) tan α}
for some b0 � 0; here α ∈ (0, π

2 ) defines the uniform slope.



Edge waves along a sloping beach 9725

g

α

y

z

O
b
0

Figure 1. Cross section of the still sea.

Let u = (u1, u2, u3) be the velocity field and let us recall (e.g. [13]) the governing
equations for the propagation of gravity water waves when ignoring viscous effects.
Homogeneity (constant density ρ) is a good approximation for water (see the numerical
data in Lighthill [1]) so that we have the equation of mass conservation in the form

∂u1

∂x
+

∂u2

∂y
+

∂u3

∂z
= 0. (1)

The equation of motion is Euler’s equation




Du1

Dt
= − 1

ρ

∂P

∂x

Du2

Dt
= − 1

ρ

∂P

∂y
− g sin α

Du3

Dt
= − 1

ρ

∂P

∂z
− g cos α

(2)

where P(t, x, y, z) denotes the pressure, g is the gravitational acceleration constant and D/Dt
is the material time derivative,

Df

Dt
= ∂f

∂t
+ u1

∂f

∂x
+ u2

∂f

∂y
+ u3

∂f

∂z

expressing the rate of change of the quantity f associated with the same fluid particle as it
moves about. The boundary conditions which select the water-wave problem from all other
possible solutions of the equations (1) and (2) are [14]:

(i) the dynamic boundary condition P = P0 at the free surface, where P0 is the constant
atmospheric pressure, decouples the motion of the air from that of the water;

(ii) the kinematic boundary condition at the free surface expresses the fact that the same
particles always form the free water surface;

(iii) the kinematic boundary condition at the bottom, requiring the normal velocity component
at the bed to be zero so that it is impossible for water to penetrate.

The general description of the propagation of a water wave is encompassed by the
equations (1) and (2), and the three boundary conditions (i)–(iii), a distinctive feature being
that the free surface is not known and must be determined as part of the solution.
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We adopt the Lagrangian point of view by following the evolution of individual water
particles. We suppose that the position of a particle at time t is given by



x = a − 1

k
ek(b−c) sin

(
ka +

√
gk sin α t

)

y = b − c +
1

k
ek(b−c) cos

(
ka +

√
gk sin α t

)

z = c + c tan α − tan α

2k
e2kb0

(
1 − e−2k c (1+cot α)

)
(3)

where k > 0 is fixed. It should be pointed out that the quantities a, b and c do not stand for
the initial coordinates of a particle, but are simply labelling variables serving to identify a
particle. We may think of them as parameters which fix the position of a particular particle
before the passage of the wave (in still water), despite the fact that the wave is not developing
from the still state, otherwise, the flow would be irrotational in view of Helmholtz’s theorem
[14] but its vorticity is nonzero (see the last section). Let us explain the origin of (3). Gerstner
[10] gave the only known nontrivial explicit solution to the full water-wave equations, showing
that the two-dimensional particle motion (a ∈ R, b � b0 � 0, k > 0)

t �→
(
a +

1

k
ekb sin(ka +

√
gk t), b − 1

k
ekb cos(ka +

√
gk t)

)

represents waves of finite amplitude in water of infinite depth. This suggests that it might be
possible to construct an edge wave using an approach similar to that for a Gerstner wave field.
While the theoretical correctness of this conclusion was established by Yih (1966) and Mollo-
Christensen [12], the outcome in both treatments was an implicit form on the water’s free
surface which makes the obtained waveform graphically and computationally inaccessible.
The closed form (3) provides the full details of the edge-wave motion without considerable
labour.

Our aim is to prove that the motion (3) is dynamically possible and that we can associate
with it an expression for the hydrodynamical pressure P such that the governing equations and
boundary conditions are all satisfied. The resulting free surface of the water will be the edge
wave we are looking for.

The map (3) is a diffeomorphism from the still water region R to the water region, bounded
below by the rigid bed {z = 0} and above by the free water surface, parametrized by


x = a − 1

k
ekb(1+tan α)−kb0 tan α sin

(
ka +

√
gk sin α t

)

y = b(1 + tan α) − b0 tan α +
1

k
ekb(1+tan α)−kb0 tan α cos

(
ka +

√
gk sin α t

)

z = (b0 − b) (1 + tan α) tan α − tan α

2k
e2kb0

(
1 − e2k(b−b0) (1+tan α)

)
(4)

with a ∈ R, b � b0 and t � 0. Indeed, observing that (a, b, c) �→ (a, b − c, c) defines a
diffeomorphism of R

3, it is enough to show that the map


a

b′

c


 �→




a − 1

k
ekb′

sin
(
ka +

√
gk sin α t

)

b′ +
1

k
ekb′

cos
(
ka +

√
gk sin α t

)

c + c tan α − tan α

2k
e2kb0

(
1 − e−2k c (1+cot α)

)
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is a diffeomorphism on R × R− × R+. To see this, observe that the third coordinate depends
only on c, being an increasing function f(c) with f (0) = 0 and limc→∞ f (c) = ∞. Therefore,
we may slice R × R− × R+ by planes parallel to the plane c = 0 and in each such plane the
approach used in the case of a Gerstner wave field [15] is applicable. This proves that (3) is a
diffeomorphism and it is easy to identify the boundary of the image of the region R under it.

The Lagrangian form of the equation of continuity (that is, the volume-preserving property
of the flow) is fulfilled since the value of the Jacobian of the map (3) is independent of
time. This, together with the previously proved fact that (3) defines at any fixed time a
diffeomorphism, shows that the motion described by (3) is dynamically possible. To complete
the proof that (3) describes the water motion induced by a gravity wave, we have to check
Euler’s equation (2) and the boundary conditions (i)–(iii) for a suitably defined value of the
hydrodynamical pressure.

The acceleration of a particular water particle is
Du

Dt
=

(
g sin α ek(b−c) sin(ka +

√
gk sin α t), −g sin α ek(b−c) cos(ka +

√
gk sin α t) , 0

)
so that the equation of motion (2) is



∂P

∂x
= −ρg sin α ek(b−c) sin(ka +

√
gk sin α t)

∂P

∂y
= ρg sin α ek(b−c) cos(ka +

√
gk sin α t) − ρg sin α

∂P

∂z
= −ρg cos α.

Passing to Lagrangian coordinates, we obtain the system


∂P

∂a
= 0

∂P

∂b
= ρg sin α e2k(b−c) − ρg sin α

∂P

∂c
= −ρg sin α e2k(b−c) − ρg cos α + ρg cos α (1 + tan α) e2kb0 e−2kc(1+cot α)

with the solution

P = P0 +
ρg sin α

2k
e2k(b−c) − ρg (c cos α + (b − b0) sin α) − ρg sin α

2k
e−2kc(1+cot α) e2kb0 .

The obtained hydrodynamical pressure has the same value for any given particle as it moves

about. At the free surface c = (b0 − b) tan α we have P = P0 so that the dynamic boundary
condition (i) is satisfied. The kinematic boundary condition at the free surface, (ii), holds
as at any instance the free surface (4) is the image under (3) of the still water surface
{c = (b0 − b) tan α : b � b0}. That there is no velocity normal to the sloping shore—
this takes care of the boundary condition (ii)—is obvious, because at z = 0 we have c = 0
and the motion (3) is planar, without any velocity component in the direction of z. The proof
that (3) is an explicit solution to the governing equations for water waves on a plane-sloping
beach is complete.

3. Discussion

We constructed an exact edge-wave solution to the full water-wave problem, the graphical
depiction of which is a fairly easy exercise. Let us now emphasize some of its significant
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properties. We present some simple observations which will provide a comprehensive
description of this nonlinear wave and the particle motion it induces below the water surface.

The wavelength in the longshore direction λ = 2π/k is related to the wave frequency ω

by

ω2 = gk sin α

while the wave period is

T = 2π√
gk sin α

.

We easily infer that

λ = gT 2

2π
sin α

so that the length of the edge wave is strongly dependent on its period and to a smaller degree
on the beach slope. The phase velocity U of the edge wave (4) is given by

U =
√

g sin α

k
(5)

a fact consistent with the observation that if the bottom is flat (α = 0) then U = 0 and no edge
wave exists. The dispersion relation (5) for edge waves is obtained [14] within the confines
of the formal linear approximation to the governing equations, but in our case the relation is
derived rigorously as a byproduct of (3).

From (3) it is clear that any water particle describes circles as the edge wave passes—all
these circles lie in planes parallel to the sloped bottom. The radius 1

k
ek(b−c) of the circle

described counterclockwise by a particle is maximal for the particles at the shoreline (that is,
for b = b0, c = 0).

As pointed out in the previous section, the motion of the water body induced by the
passage of the edge wave (4) is rotational. The vorticity of the water flow defined by (3) is

curl u =
(

−∂u2

∂z
,

∂u1

∂z
,

∂u2

∂x
− ∂u1

∂y

)

by the vanishing of u3. Computing the inverse of the Jacobian matrix of the diffeomorphism
(3) as



1+exp[k(b−c)] cos k(a+Ut)

1−exp[2k(b−c)]
exp[k(b−c)] sin k(a+Ut)

1−exp[2k(b−c)] 0

exp[k(b−c)] sin k(a+Ut)

1−exp[2k(b−c)]
1−exp[k(b−c)] cos k(a+Ut)

1−exp[2k(b−c)] 0

0 1
(1+tan α) (1−exp[2k(b0−c−c cot α)])

1
(1+tan α) (1−exp[2k(b0−c−c cot α)])




a straightforward calculation yields the expression of the vorticity

curl u = −
(

0, 0,
2kU

1 − e2k(b−c)
e2k(b−c)

)

for a particle whose parameters are (a, b, c). Therefore, the vorticity is in the opposite sense
to the revolution of the particles in their circular orbits, decreasing rapidly with distance from
the shoreline/bed. Note that, despite the fact that the flow (3) is not two dimensional, the
vorticity of each individual water particle is conserved as the particle moves about.
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The run-up pattern is obtained by setting z = 0 in (4); this forces b = b0 so that we have



x = a − 1

k
ekb0 sin

(
ka +

√
gk sin α t

)

y = b0 +
1

k
ekb0 cos

(
ka +

√
gk sin α t

)

z = 0

(6)

with a ∈ R. The above formula represents the parametrization of a smooth trochoid (if b0 < 0)
or of a cycloid with upward cusps (if b0 = 0); it also explains why we imposed the condition
b0 � 0 as otherwise we would obtain a self-intersecting curve.

beach

water

beach

water

Figure 2. Run-up patterns at a fixed instance, viewed in the (x, y)-plane: trochoid (top) and cycloid
(bottom).

A strong confirmation of a cusped run-up exists in the photograph of edge waves on
the beach in Alum Bay, England [16] while several pictures in Komar [3] demonstrate the
trochoidal run-up pattern for edge waves.

Another aspect of interest is the amplitude of the edge wave. To determine the elevation
with respect to the reference half-plane

{
z = − tan α

2k
e2kb0 + (b0 − y) tan α : y � b0

}

we compute the distance of a point (x, y, z) lying on the free surface (4) to this plane,

d = z cos α + (y − b0) sin α +
sin α

2k
e2kb0

with the understanding that positive/negative values on the right-hand side mean that the point
lies above/below the plane. Since (with b � b0)

d = sin α

2k

(
e2kb(1+tan α)−2kb0 tan α + 2 ekb(1+tan α)−kb0 tan α cos(ka +

√
gk sin α t)

)
(7)

we see that the amplitude of the edge wave decays exponentially away from the shoreline
(as b → −∞). The same conclusion is reached by a formal linear approximation [17] and
explains why edge waves are called ‘trapped waves’.

As expected and ensured by (7), the amplitude of the edge wave varies with the parameters
a ∈ R, b � b0. From (7) we also infer that, at a fixed b � b0, the crests and troughs correspond
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to the maximal/minimal values of cos(ka +
√

gk sin α t). At a fixed time t � 0, we obtain the
crest curves (with m ∈ Z fixed and b � b0 playing the role of a running parameter)



x = 2mπ

k
− 1

k

√
gk sin α t

y = b(1 + tan α) − b0 tan α +
1

k
ekb(1+tan α)−kb0 tan α

z = (b0 − b)(1 + tan α) tan α − tan α

2k
e2kb0

(
1 − e2k(b−b0)(1+tan α)

)
and the trough curves



x = (2m + 1)π

k
− 1

k

√
gk sin α t

y = b(1 + tan α) − b0 tan α − 1

k
ekb(1+tan α)−kb0 tan α

z = (b0 − b)(1 + tan α) tan α − tan α

2k
e2kb0

(
1 − e2k(b−b0)(1+tan α)

)
.

Note that for both the crest and trough curves the value of x (at a given time) is fixed:
standing at that location and looking towards the sea, these curves, orthogonal to the shoreline,
are fully visible at certain instants. Indeed, taking into account the fact that on a crest/trough
curve the deviation from the reference plane is

sin α

2k

(
e2kb(1+tan α)−2kb0 tan α ± 2 ekb(1+tan α)−kb0 tan α

)
b � b0

in view of (7), the monotonicity of the right-hand side shows that the deviation becomes
smaller (in absolute value) with the distance from the shore. This feature can be recognized
in the graphical representation of the edge wave given in figure 3.

Figure 3. The edge wave viewed from offshore. The sinusoidal longshore structure and the
exponential offshore decay in amplitude are visible.
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